
Risk-Based Attack Surface Approximation
Christopher Theisen

North Carolina State University
Department of Computer Science

890 Oval Drive, #8206 Raleigh, North
Carolina, United States

+1 919 515 2858

crtheise@ncsu.edu

ABSTRACT

In our increasingly interconnected world, software security is an

increasingly important issue for development teams. However,

there is too much security work to do for these teams as security

needs have out-scaled security resources. To help prioritize security

efforts, professionals use the attack surface of a system, or the sum

of all paths for untrusted data into and out of a system, to identify

security relevant code. However, identifying code that lies on the

attack surface is a difficult and resource-intensive process. Our

research proposes the use of crash dump stack traces as an empirical

metric for approximating the attack surface. We hypothesize that

code that appears on crash dump stack traces represent activity that

has put the system under stress, and is therefore indicative of

potential security vulnerabilities. The goal of this research is to aid

software engineers in prioritizing security efforts by approximating

the attack surface of a system via crash dump stack trace analysis.

In a trial on Mozilla Firefox, the risk-based attack surface

approximation selected 15.8% of files and contained 73.6% of

known vulnerabilities. Randomly sampling 10% of crash dump

stack traces for inclusion in our analysis resulted in only 2.7%

fewer known vulnerabilities included on our attack surface.

Through our approach, we look to optimize effort for the security

community in finding, fixing and preventing security

vulnerabilities.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – complexity metrics,

process metrics, product metrics

General Terms

Management, Measurement, Design, Economics, Security.

Keywords

Stack traces, crash dumps, attack surface.

1. PROBLEM AND MOTIVATION
The attack surface of a system can be used to determine which parts

of a system could have exploitable security vulnerabilities. Items

not on the attack surface of a system are unreachable by outside

input, and, therefore, less likely to be exploited. If outside input

cannot be passed to code containing a security vulnerability,

engineering hours spent working on finding and fixing that

vulnerability could be spent elsewhere. If generating the attack

surface of a system was a more straightforward process, security

professionals could focus their efforts on code containing

vulnerabilities that are reachable, and therefore exploitable, by

malicious users. Reducing the amount of code to be inspected may

help improve the economics of security assessments and allow for

more efficient proactive reviews of potentially vulnerable code.

The Open Web Application Security Project (OWASP) defines the

attack surface of a system as the paths in and out of a system, the

data that travels those paths, and the code that protects the paths

and the data [1]. In the research community, Howard et al.

introduced the concept of an attack surface, describing entry points

to a system that might be vulnerable along three dimensions: targets

and enablers, channels and protocols, and access rights [5]. Later,

Manadhata and Wing [12] formalized the notion of attack surface,

including methods, channels, untrusted data, and a direct and

indirect entry and exit point framework that identifies methods

through which untrusted data passes.

The software engineering community lacks a practical means of

identifying the parts of the system that are on the attack surface.

The goal of this research is to aid software engineers in prioritizing

security efforts by approximating the attack surface of a system via

crash dump stack trace analysis. We propose risk-based attack

surface approximation (RASA), an automated approach to

identifying parts of the system that are contained on the attack

surface through stack trace analysis. We parse stack traces, adding

all code found in these traces onto RASA. Code that appears in

stack traces caused by user activity is on the attack surface because

it appears in a code path reached by users.

Crash dump stack traces from user-initiated crashes have three

desirable attributes for measuring attack surfaces: (a) they represent

user activity that puts the system under stress; (b) they include both

direct and indirect entry points; and (c) they provide automatically

generated control and data flow graphs. We seek to assess the

degree to which these attributes of stack traces support the

identification of attack surfaces. We call our approach “Risk-

Based Attack Surface Approximation” because it is an efficient

means of identifying the part of the attack surface that is most

susceptible to containing vulnerabilities.

We assess our approach by analyzing the percentage of actual

reported vulnerabilities in the code and whether they occur in our

approximated attack surface. The higher the percentage of

vulnerabilities covered on our attack surface approximation and the

smaller the subset of total code artifacts that appear on our

approximation, the better our approach is performing. In addition,

we also explore randomly sampling crash dump stack traces for

building our approximation. If a randomly sampled subset of crash

dump stack traces results in similar performance to using every

available crash, then sampling may be an effective way to reduce

the amount of data required by RASA.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the

owner/author(s).

2. BACKGROUND AND RELATED WORK
In this section, we provide a brief overview of related work.

2.1 Attack Surface
Howard et al. [5] provided a definition of attack surface using three

dimensions: targets and enablers, channels and protocols, and

access rights. Not all areas of a system may be directly or indirectly

exposed to the outside. Some parts of a complex system, e.g.

Windows OS, may be for internal use only and cannot be reached

or exploited by an attacker. For example, installation routines are

left in the system, but they are never accessed again and are unlikely

to have security implications.

Manadhata et al. [11] describe how an attack surface might be

approximated by looking at Application Program Interface (API)

entry points. However, the Manadhata approach does not cover all

exposed code, as the authors mention. Specifically, internal flow of

data through a system was not identified. While the external points

of a system are a useful place to start, they do not encompass the

entirety of exposed code in the system. Internal points within the

system could also contain security vulnerabilities that the reviewer

should be aware of. Previous efforts to determine the attack surface

of a system have used API scanning techniques [12], but these

techniques have limitations in terms of how much code they can

cover. Further, their approach to measuring attack surfaces required

expert judgment of security professionals to determine if code is

security relevant.

In our previous RASA study [15], researchers found a correlation

between binaries that appear on stack traces from crash dumps and

code that contained at least one security vulnerability fix. The

correlation could be useful to security professionals when targeting

security reviews of codebases. By targeting security efforts to

binaries in the ASA instead of the entire codebase, security

professionals could save engineering hours. The researchers

created the ASA by parsing stack traces from Windows 8 OS, and

including any binaries involved in a stack trace in their

approximation. They evaluated the effectiveness of their approach

by comparing the approximation against the location of historical

vulnerabilities in Windows 8 OS. In that study, 48.4% of shipped

binaries seen in at least one crash dump stack trace in Windows 8

OS contained 94.8% of the vulnerabilities seen over the same time

period [15].

2.2 Using Crash Reports
The use of crash reporting systems, including stack traces from the

crashes, is becoming a standard industry practice1 [16][2]. Bug

reports contain information to help engineers replicate and locate

software defects. Liblit and Aiken [10] introduced a technique

automatically reconstructing complete execution paths using stack

traces and execution profiles. Later, Manevich et al. [13] added data

flow analysis information on Liblit and Aiken’s approach. Other

studies use stack traces to localize the exact fault location

[7][17][16]. Lately, an increasing number of empirical studies use

bug reports and crash reports to cluster bug reports according to

their similarity and diversity, e.g. Podgurski et al. [14] were among

the first to take this approach. Other studies followed [2][9]. Not all

crash reports are precise enough to allow for this clustering. Guo et

al. [3] used crash report information to predict which bugs will get

fixed. Zimmermann et al. [18] assessed the quality of bug reports

1 http://www.crashlytics.com/blog/its-finally-here-announcing-

crashlytics-for android/

to suggest better and more accurate information helping developers

to fix the bug.

With respect to vulnerabilities, Huang et al. [6] used crash reports

to generate new exploits while Holler et al. [4] used historic crashes

reports to mutate corresponding input data to find incomplete fixes.

Kim et al. [8] analyzed security bug reports to predict “top

crashes”—those few crashes that account for the majority of crash

reports—before new software releases. As mentioned previously,

we expanded on previous studies by exploring the correlation

between code appearing in a stack trace and having historical

vulnerabilities [15].

3. APPROACH AND UNIQUENESS
In this section, we describe the implementation of RASA and our

approach to randomly sampling stack traces for a case study.

3.1 RASA Implementation
To implement RASA for a target system, we first select a collection

of stack traces from crash dumps from the software system we are

analyzing. These stack traces are chosen from a set period of time.

For each individual stack trace pulled from a crash dump, we isolate

the binary, file, or function on each line of each stack trace, and

record what code artifact was seen and how many times it has been

seen in a stack trace. Each of the code artifacts from stack traces

should then be mapped to a code artifact in the system. For

example, if the file foo.cpp appears in a stack trace, the matching

foo.cpp in system should be identified. A software system may

have multiple foo.cpp files, so a method for identifying which

foo.cpp was in the crash is required. A list of code artifacts in a

software system could come from toolsets provided by the

company maintaining the system or pulled directly from source

control, in the case of open source projects.

We have created a toolset to parse each individual stack trace in our

target dataset in sequence, and extract the individual code artifacts

that appear on each line. The tool then outputs the frequency in

which each unique code artifact appears in a stack trace from the

parsed set. For this particular study, we do not consider the number

of times a code artifact appears; only that it appears at least once

Figure 1: A visual representation of what an attack surface is

for a system; the shaded area is the attack surface, where input

flows through the system.

To tie stack trace appearances to the codebase, we generate a list of

all source code files from the system under inspection and combine

that list with the list of appearances in stack traces. A visualization

of the code appearing on RASA can be seen in Figure 1. The

individual tools developed for some of these steps can be found on

our GitHub2 page. In addition to the list of files on the ASA, we

count the number of artifacts that have security vulnerabilities.

After we have the list of code that appears on at least one stack trace

and the code that had at least one vulnerability fix, we calculate two

RASA evaluation metrics:

1. The percentage of code in the target software system that

appears in at least one stack trace (or the Risk-based

Attack Surface Approximation), and

2. The percentage of files with security vulnerabilities that

appear in at least one stack trace, or vulnerability

coverage.

For 1) above, we calculate the percentage of files found on stack

traces via the following formula. We define this metric as File

Coverage (FC):

(1) 𝐹𝐶 =
𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑜𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

For 2) above, we calculate our vulnerability coverage via the

following formula. We define this metric as Vulnerability

Coverage (VC):

(2) 𝑉𝐶 =
 𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑣𝑢𝑙𝑛𝑠. 𝑜𝑛 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑣𝑢𝑙𝑛𝑠.

3.2 Data Requirements
The initial study on RASA was performed on Microsoft Windows

8 [15] and was done with millions of crashes. Not all organizations

have as much crash information as these large organizations, so the

feasibility of RASA on smaller datasets should be explored. To

explore this idea, we take percentages of available stack traces from

the target software system, from 90% of the total stack traces

available to 10% of the available stack traces. The 100% case is

covered by our initial experiment in Section 3.1. We can then

explore the difference in code coverage in the resultant RASA, and

the difference in covered security vulnerabilities in the resultant

RASA. Our hypothesis is as we increase the number of stack traces

in our RASA, our code coverage and vulnerability metrics will

converge towards our metrics for 100% stack trace use.

For each of these slices, we perform the random sampling analysis

as outlined in section 3.2. From those results, we can see how

sampling affects the result of ASA. Our hypothesis is as we

increase the number of stack traces in our ASA, the effect of

random sampling on the end result will decrease.

3.3 Uniqueness
While other researchers have made use of crash dump stack traces

as a potential metric for exploring software defects, to our

knowledge there is little previous work on using crash dump stack

traces as a metric for security vulnerabilities. In addition, previous

work has focused on individual stack traces for analysis, while our

approach focuses on the aggregation of a large set of stack traces to

develop our results.

2 https://github.com/theisencr/stack-trace-parser

To our knowledge, RASA is the first approach based on empirical

data collection to approximate the attack surface of a system. Other

attack surface tools and approaches, such as those described in

section 2.1 and tools such as Microsoft’s Attack Surface Analyzer,

focus on program analysis techniques rather than existing datasets.

An approach based on analysis of stack traces may be more

practical for the generalization of attack surface analysis, as many

organizations already collect crash dump stack traces from their

customers. Repurposing this existing dataset could lower the

barriers to entry for implementation of RASA in the field.

4. RESULTS AND CONTRIBUTIONS
In the initial RASA study [15], we found a correlation between

code artifacts that appear on stack traces generated by the system

and where historical vulnerabilities discovered by security

professionals have been fixed in code. The attack surface

correlation could be useful to security professionals when targeting

security reviews. By targeting security efforts at these exposed

areas instead of the entire codebase, security professionals can

maximize the impact of the engineering hours they have available

to them. In the previous study, it was found that 48.4% of binaries

in Windows contained 94.8% of historically seen vulnerabilities

[15]. Limiting security engineering efforts to half of the codebase

while still finding the majority of potential bugs is a tradeoff teams

can make.

After applying RASA, 15.8% of files shipped with Firefox are

included on the attack surface, and this subset contains 73.5% of

the historical vulnerabilities seen over the same period of time.

These results suggest that code that appears in stack traces derived

from crashes are more likely to have vulnerabilities as well. If the

program is crashing, that indicates a data flow path that has put the

system under stress and may contain errors that result in security

vulnerabilities. From the result, we conclude that the automated

attack surface approximation approach may be useful in limiting

the scope of code that developers need to review while missing a

minimal number of potentially flawed areas.

We have also improved the granularity of attack surface

approximation compared to the previous study [1], in addition to

the quantitative improvements in coverage and specificity. By

performing attack surface approximation at the file level, we

provide more actionable results for practitioners. While a single

binary file could contain thousands of individual files for

developers to review, files are typically a more manageable level

of granularity for a developer, depending on the development

practices of the organization using attack surface approximation.

The average number of files covered by RASA and the average

number of security vulnerabilities covered by RASA at various

random sampling points is also found in Figure 2 and Figure 3. As

the size of the random sampling increases, we see that the number

of files covered by RASA also increases, while the standard

deviation of the individual runs shows no discernable trend. For

coverage of security vulnerabilities, we also see a slight increase in

coverage as the random sampling size increases. In the case of

security vulnerability coverage, we see that the standard deviation

decreases as the sample size increases. In our full results, only 6

files associated with a security vulnerability fix appeared in only

one stack trace from the Firefox dataset. In the dataset, only 15 files

associated with security vulnerability fixes appeared in less than 10

crashes. In the full dataset, the difference in total vulnerability

coverage from a 10% sample to the complete set of crashes is 11

files.

From these results, we conclude that randomly sampling stack

traces for the Firefox dataset is an effective approach for reducing

the amount of data required to implement RASA. A 10% random

sample has a minimal effect on the final approximation, meaning

organizations can store a fraction of their customer crashes and still

make use of our approach to improve their security efforts. Our

intuition told us that random sampling would cause an equivalent

drop in coverage of security vulnerabilities: why is this not the

case? Our observation that few files appear less than 10 times in the

full Firefox dataset could possibly explain why random sampling

had a minimal effect on vulnerable file coverage. In order for a

vulnerable file to longer be covered by RASA, it cannot appear in

any stack trace from a crash in the target system. For example, a

30% sampling of crashes is likely to include at least one occurrence

of foo.cpp if it occurs 8 times in the complete dataset.

While this result indicates that RASA can make effective use of

sampling for large projects like Firefox, it also has implications for

smaller projects that may not have crash dump stack traces on the

same scale. For a smaller project that collects 10% of the crashes

that Firefox does, RASA may still be a valuable technique for

prioritizing security efforts. Overall, these results are promising for

the implementation of RASA across a wide variety of software

projects.

In this paper and in previous work, RASA was generated based on

an on/off approach. If a code artifact appeared in at least one crash

dump stack trace, then RASA considers that code entity as part of

the attack surface of the system. However, further prioritization

within RASA may be possible. The frequency in which code

appears in stack traces from crash dumps may be an additional

metric to explore for further prioritization of security reviews

beyond RASA. The more a code artifact is involved in crashes, the

more likely it might be that that code artifact has a related security

vulnerability.

In addition to our initial feasibility study and random sampling

study, we have also explored the effect of frequency of appearance

of code on crash dump stack traces and their likelihood of

containing a security vulnerability. We have found a casual

relationship between frequency of appearance and our FC and VC

metrics. In future studies, we plan to explore this frequency of

appearance metric in more detail.

5. FUTURE WORK
RASA currently looks at a specific time period of crashes and

vulnerabilities to build its attack surface approximation. In the

future, we plan to explore how turning this time period into a sliding

window instead of a static period of time. For example, do crashes

from a previous time slice predict vulnerabilities that appear in

future slices?

RASA is an approximation of the attack surface, and as such not

every vulnerability is covered by the approach. Analyzing the types

of vulnerabilities not covered by RASA is an important step for

determining the “blind spots” of the approach so teams can use

other methods to find and fix those vulnerabilities.

RASA currently looks at the code entities themselves as possible

locations for security vulnerabilities. The code entities themselves

may not be the interesting metric from a security perspective. The

relationships between code entities may do a better job of pointing

out potential vulnerabilities. Many common vulnerability types are

the result of bad data handling, including SQL injection attacks and

buffer overflow attacks. Examining the relationships between files

(or other code entities at various levels of granularity) and

determine which relationships appear in crashes most frequently.

These bad handoffs may point us towards where vulnerable code

lives.

In addition to the statistical results from mining crash dump stack

traces, exploring shapes within graph representations of the crash

dump stack traces is another area we plan to explore to narrow the

scope of code that could contain security vulnerabilities. In

particular, do certain shapes of incoming and outgoing nodes result

in more frequent sightings of vulnerabilities? We hypothesize that

certain shapes, such as many code entities calling into one entity

but that entity only calling out to few entities, may exhibit more

vulnerabilities than other shapes.

Figure 2: Graph of the percentage of files included on the

RASA at random samples, with error bars indicating the

deviation between samples.

Figure 3: Graph of the percentage of vulnerabilities covered

by RASA at random samples, with error bars indicating the

deviation between samples.

71%

72%

73%

74%

75%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
er

ce
n

t
o
f

V
u

ln
er

a
b

il
it

ie
s

o
n

 a
 S

ta
ck

 T
ra

ce

Random Sample Size

12%

13%

14%

15%

16%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
er

ce
n

t
o
f

F
ir

ef
o
x

 f
il

es
 o

n
 a

 S
ta

ck
 T

ra
ce

Random Sample Size

Where code appears on graph representations of software systems

may also be important for prioritization of security efforts. For

example, if security bugs are more likely to appear on the “edge”

of a software system, or closer to API entry points, then

prioritization of those code artifacts may be useful for finding

security vulnerabilities faster.

Visualizing the shape and edge effects may also result in

meaningful impact for security professionals as well. Building

dynamic visualizations similar to the one presented in Figure 1 may

help security professionals better understand the systems they are

analyzing. Developers already make use of call graphs to

understand the relationship between code artifacts in software

systems, and extending the graph metaphor to crash dump stack

traces could make Figure 1 an effective visualization of the attack

surface for developers.

RASA may create several positive impacts on the software

engineering community. An automated approach to attack surface

generation could allow security teams to make more efficient use

of their time, reducing the amount of hours used on these tasks,

allowing for more efficient discovery of vulnerabilities, or a

combination of both. Because the development of the attack surface

of their product would be automated, they would not need to tie up

resources developing one themselves. For organizations without a

security team or just starting security efforts, RASA gives them the

first steps toward targeting what limited security resources they

have. In addition, the analysis of how much data is required can

help engineering firms make informed decisions on how many

resources need to be dedicated to implementation of RASA.

6. REFERENCES
[1] Bird, J. and Manico, J. OWASP Attack Surface Analysis

Cheat Sheet. Open Web Application Security Project,

2015.

https://www.owasp.org/index.php/Attack_Surface_Analy

sis_Cheat_Sheet.

[2] Dang, Y., Wu, R., Zhang, H., Zhang, D., and Nobel, P.

ReBucket: A method for clustering duplicate crash reports

based on call stack similarity. International Conference on

Software Engineering (ICSE), (2012), 1084–1093.

[3] Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy,

B. Characterizing and Predicting Which Bugs Get Fixed:

An Empirical Study of Microsoft Windows. Proceedings

of the 32nd ACM/IEEE International Conference on

Software Engineering - ICSE ’10, (2010), 495.

[4] Holler, C., Herzig, K., and Zeller, A. Fuzzing with code

fragments. Proceedings of the 21st USENIX conference on

Security symposium (Security’12), (2012), 38–38.

[5] Howard, M., Pincus, J., and Wing, J.M. Measuring

Relative Attack Surfaces. Computer Security in the 21st

Century, CMU-TR-03-169 (2005), 109–137.

[6] Huang, S.K., Huang, M.H., Huang, P.Y., Lu, H.L., and

Lai, C.W. Software crash analysis for automatic exploit

generation on binary programs. IEEE Transactions on

Reliability 63, 1 (2014), 270–289.

[7] Jin, W. and Orso, A. F3: Fault Localization for Field

Failures. International Symposium on Software Testing

and Analysis, (2013), 213–223.

[8] Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S.C., and

Park, S. Which crashes should i fix first?: Predicting top

crashes at an early stage to prioritize debugging efforts.

IEEE Transactions on Software Engineering 37, 3 (2011),

430–447.

[9] Kim, S., Zimmermann, T., and Nagappan, N. Crash

Graphs: An Aggregated View of Multiple Crashes to

Improve Crash Triage. Dependable Systems & Networks

(DSN), (2011), 486 – 493.

[10] Liblit, B., Aiken, A., Liblit, B., and Aiken, A. Building a

Better Backtrace: Techniques for Postmortem Program

Analysis. Technical Report. University of California at

Berkeley, October (2002).

[11] Manadhata, P., Wing, J., Flynn, M., and McQueen, M.

Measuring the attack surfaces of two FTP daemons. 2nd

ACM workshop on Quality of Protection, (2006), 3–10.

[12] Manadhata, P. and Wing, J. An attack surface metric.

IEEE Transactions on Software Engineering 37, 3 (2011),

371–386.

[13] Manevich, R., Adams, S., Das, M., and Yang, Z. PSE:

Explaining Program Failures via Postmortem Static

Analysis. Proceedings of the 12th ACM SIGSOFT twelfth

international symposium on Foundations of software

engineering (SIGSOFT ’04/FSE-12), (2004), 63–72.

[14] Podgurski, A., Leon, D., Francis, P., et al. Automated

support for classifying software failure reports. 25th

International Conference on Software Engineering, 2003.,

(2003), 465–475.

[15] Theisen, C., Herzig, K., Morrison, P., Murphy, B., and

Williams, L. Approximating Attack Surfaces with Stack

Traces. IEEE/ACM 37th IEEE International Conference

on Software Engineering, (2015).

[16] Wang, S., Khomh, F., and Zou, Y. Improving bug

localization using correlations in crash reports. IEEE

International Working Conference on Mining Software

Repositories, (2013), 247–256.

[17] Wu, R., Zhang, H., Cheung, S.-C., and Kim, S.

CrashLocator: locating crashing faults based on crash

stacks. International Symposium on Software Testing and

Analysis (ISSTA), (2014), 204–214.

[18] Zimmermann, T., Premraj, R., Bettenburg, N., Just, S.,

Schröter, A., and Weiss, C. What makes a good bug

report? IEEE Transactions on Software Engineering 36,

(2010), 618–643.

